Advanced Graphene Biomaterials
ABOUT
Cardiovascular diseases and healthcare-associated infections are a major burden worldwide.
Our MISSION is to use graphene and its derivatives to develop new biomaterials and medical devices with enhanced performance, with primary focus on antimicrobial and cardiovascular applications. We tackle challenges in all stages of biomaterials development, from bench to bedside.
We guide our research through VALUES as scientific rigor, work ethics and integrity, mutual help and commitment.
Our VISION is to be a national and international reference in generation of knowledge, training of young researchers and technology transference in the area of biomaterials for medical applications.
RESEARCH
Graphene is a single layer of carbon atoms with outstanding mechanical strength, electroconductive properties and light absorption. It is considered the material of the 21st century, and is revolutionizing the materials field!
By playing with graphene-based materials’ (GBMs) properties (thickness, lateral size and oxidation degree), we design novel biomaterials with antibacterial, bio/hemocompatible, photothermal/photodynamic and/or mechanically suitable properties.
Advanced biomaterials are being designed in the form of colloids, films, composites or coatings using different conjugations of GBMs, polymers and production techniques. After preparing and fully characterizing the biomaterials, we evaluate their biological interaction with the host (in vitro and in vivo), namely with proteins, mammalian cells, bacteria and blood components.
We are addressing several biomedical applications, including:
- antimicrobial composites (with different polymers and decellularized matrices) for tissue engineering;
- light-activated antimicrobial surfaces and coatings to prevent bacterial adhesion and medical device-related infection (e.g. GOcap - cap for hemodialysis catheter disinfection)
- mechanically reinforced hydrogels and decellularized blood vessels for cardiovascular devices (e.g. small diameter vascular grafts);
- energy harvesting systems to power implantable electronic medical devices.
Together with our national and international scientific, clinical and industrial collaborators, we range our work from fundamental to translational research, aiming to reach the patients. We have attracted competitive national and international funding worth more than 6 M€.
Find us on LinkedIn!
Team
Selected Publications
Long-term in vivo degradation and biocompatibility of degradable pHEMA hydrogels containing graphene oxide. Acta Biomaterialia173:351-364, 2024. [Journal: Article] [CI: 6] [IF: 9.4 (*)]
DOI: 10.1016/j.actbio.2023.11.012 SCOPUS: 85178625789
Moura D., Pereira A.T., Ferreira H.P., Barrias C.C., Magalhães F.D., Bergmeister H., Gonçalves I.C.
Poly(2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contacting applications: From soft inert to strong degradable material. Acta Biomaterialia164:253-268, 2023. [Journal: Article] [CI: 6] [IF: 9.4]
DOI: 10.1016/j.actbio.2023.04.031 SCOPUS: 85158155551
Pereira A.T., Rodrigues C.R.S., Silva A.C., Vidal R., Ventura J.O., Gonçalves I.C., Pereira A.M.
Tailoring the Electron Trapping Effect of a Biocompatible Triboelectric Hydrogel by Graphene Oxide Incorporation towards Self-Powered Medical Electronics. ACS Biomaterials Science and Engineering9(6):3712-3722, 2023. [Journal: Article] [CI: 1] [IF: 5,8 (*)]
DOI: 10.1021/acsbiomaterials.2c01513 SCOPUS: 85163251117
Moura D., Pereira R.F., Gonçalves I.C.
Recent advances on bioprinting of hydrogels containing carbon materials. Materials Today Chemistry23:, 2022. [Journal: Review] [CI: 19] [IF: 7,3]
DOI: 10.1016/j.mtchem.2021.100617 SCOPUS: 85119916519
Gonçalves I.C., Henriques P.C.
Graphene: an ally for antibacterial biomaterials. New Trends in Smart Nanostructured Biomaterials in Health Sciences:379-407, 2022. [Book: Book Chapter]
DOI: 10.1016/B978-0-323-85671-3.00004-X SCOPUS: 85158937556
Ferreira H.P., Moura D., Pereira A.T., Henriques P.C., Barrias C.C., Magalhães F.D., Gonçalves I.C.
Using Graphene-Based Materials for Stiff and Strong Poly(ethylene glycol) Hydrogels. International Journal of Molecular Sciences23(4):, 2022. [Journal: Article] [CI: 9] [IF: 5,6]
DOI: 10.3390/ijms23042312 SCOPUS: 85125399528
Amaral S.I., Costa-Almeida R., Gonçalves I.C., Magalhães F.D., Pinto A.M.
Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon190:194-244, 2022. [Journal: Review] [CI: 25] [IF: 10,9]
DOI: 10.1016/j.carbon.2021.12.084 SCOPUS: 85123031677
Pereira A.T., Schneider K.H., Henriques P.C., Grasl C., Melo S.F., Fernandes I.P., Kiss H., Martins M.C.L., Bergmeister H., Gonçalves I.C.
Graphene Oxide Coating Improves the Mechanical and Biological Properties of Decellularized Umbilical Cord Arteries. ACS Applied Materials and Interfaces13(28):32662-32672, 2021. [Journal: Article] [CI: 13] [IF: 10,4]
DOI: 10.1021/acsami.1c04028 SCOPUS: 85111180304
Henriques P.C., Pereira A.T., Bogas D., Fernandes J.R., Pinto A.M., Magalhães F.D., Gonçalves I.C.
Graphene films irradiated with safe low-power NIR-emitting diodes kill multidrug resistant bacteria. Carbon180:10-21, 2021. [Journal: Article] [CI: 10] [IF: 11,3]
DOI: 10.1016/j.carbon.2021.04.085 SCOPUS: 85105267175
Henriques P.C., Pereira A.T., Pires A.L., Pereira A.M., Magalhães F.D., Gonçalves I.C.
Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness. ACS Applied Materials and Interfaces12(18):21020-21035, 2020. [Journal: Article] [CI: 34] [IF: 9,2]
DOI: 10.1021/acsami.9b21841 SCOPUS: 85084379485
Pereira A.T., Henriques P.C., Schneider K.H., Pires A.L., Pereira A.M., Martins M.C.L., Magalhaes F.D., Bergmeister H., Goncalves I.C.
Graphene-based materials: The key for the successful application of pHEMA as a blood-contacting device. Biomaterials Science9(9):3362-3377, 2021. [Journal: Article] [CI: 18] [IF: 7,6]
DOI: 10.1039/d0bm01699c SCOPUS: 85105463372
Pinto A.M., Pereira A.T., Gonçalves I.C.
Carbon Biomaterials. Biomaterials Science: An Introduction to Materials in Medicine:327-360, 2020. [Book: Book Chapter] [CI: 4]
DOI: 10.1016/B978-0-12-816137-1.00025-8 SCOPUS: 85125736312
Borges I., Henriques P.C., Gomes R.N., Pinto A.M., Pestana M., Magalhães F.D., Gonçalves I.C.
Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance. Nanomaterials10(2):, 2020. [Journal: Article] [CI: 19] [IF: 5,1]
DOI: 10.3390/nano10020349 SCOPUS: 85079714581
Melo S.F., Neves S.C., Pereira A.T., Borges I., Granja P.L., Magalhães F.D., Gonçalves I.C.
Incorporation of graphene oxide into poly(ɛ-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering C109:, 2020. [Journal: Article] [CI: 34] [IF: 7,3]
DOI: 10.1016/j.msec.2019.110537 SCOPUS: 85077755863
Pereira A.T., Henriques P.C., Costa P.C., Martins M.C.L., Magalhães F.D., Gonçalves I.C.
Graphene oxide-reinforced poly(2-hydroxyethyl methacrylate) hydrogels with extreme stiffness and high-strength. Composites Science and Technology184:, 2019. [Journal: Article] [CI: 28] [IF: 7,1]
DOI: 10.1016/j.compscitech.2019.107819 SCOPUS: 85072771699
Henriques P., Borges I., Pinto A., Magalhães F., Gonçalves I.
Fabrication and antimicrobial performance of surfaces integrating graphene-based materials. Carbon132:709-732, 2018. [Journal: Review] [CI: 74] [IF: 7,5]
DOI: 10.1016/j.carbon.2018.02.027 SCOPUS: 85043307316
Gomes R.N., Borges I., Pereira A.T., Maia A.F., Pestana M., Magalhães F.D., Pinto A.M., Gonçalves I.C.
Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon139:635-647, 2018. [Journal: Article] [CI: 49] [IF: 7,5]
DOI: 10.1016/j.carbon.2018.06.044 SCOPUS: 85050155850
Sousa A., Neves S.C., Gonçalves I.C., Barrias C.C.
In vitro interaction of polymeric biomaterials with cells. Characterization of Polymeric Biomaterials:285-315, 2017. [Book: Book Chapter] [CI: 7]
DOI: 10.1016/B978-0-08-100737-2.00012-1 SCOPUS: 85071391610
Pinto A.M., Goncąlves C., Sousa D.M., Ferreira A.R., Moreira J.A., Goncąlves I.C., Magalhães F.D.
Smaller particle size and higher oxidation improves biocompatibility of graphene-based materials. Carbon99:318-329, 2016. [Journal: Article] [CI: 68] [IF: 6,3]
DOI: 10.1016/j.carbon.2015.11.076 SCOPUS: 84959449298