Where Ideas Grow

Advanced Graphene Biomaterials

ABOUT

Cardiovascular diseases and healthcare-associated infections are a major burden worldwide.

Our MISSION is to use graphene and its derivatives to develop new biomaterials and medical devices with enhanced performance, with primary focus on antimicrobial and cardiovascular applications. We tackle challenges in all stages of biomaterials development, from bench to bedside.

We guide our research through VALUES as scientific rigor, work ethics and integrity, mutual help and commitment.

Our VISION is to be a national and international reference in generation of knowledge, training of young researchers and technology transference in the area of biomaterials for medical applications.

 

RESEARCH

Graphene is a single layer of carbon atoms with outstanding mechanical strength, electroconductive properties and light absorption. It is considered the material of the 21st century, and is revolutionizing the materials field!
By playing with graphene-based materials’ (GBMs) properties (thickness, lateral size and oxidation degree), we design novel biomaterials with antibacterial, bio/hemocompatible, photothermal/photodynamic and/or mechanically suitable properties.

Advanced biomaterials are being designed in the form of colloids, films, composites or coatings using different conjugations of GBMs, polymers and production techniques. After preparing and fully characterizing the biomaterials, we evaluate their biological interaction with the host (in vitro and in vivo), namely with proteins, mammalian cells, bacteria and blood components.

We are addressing several biomedical applications, including:

  1. antimicrobial composites (with different polymers and decellularized matrices) for tissue engineering;
  2. light-activated antimicrobial surfaces and coatings to prevent bacterial adhesion and medical device-related infection (e.g. GOcap - cap for hemodialysis catheter disinfection)
  3. mechanically reinforced hydrogels and decellularized blood vessels for cardiovascular devices (e.g. small diameter vascular grafts);
  4. energy harvesting systems to power implantable electronic medical devices.

Together with our national and international scientific, clinical and industrial collaborators, we range our work from fundamental to translational research, aiming to reach the patients. We have attracted competitive national and international funding worth more than 6 M€.
Find us on LinkedIn!

SEM image of a graphene oxide spray-coated silicone with antibacterial properties.

Team

Selected Publications

Moura D., Rohringer S., Ferreira H.P., Pereira A.T., Barrias C.C., Magalhães F.D., Bergmeister H., Gonçalves I.C.,
Long-term in vivo degradation and biocompatibility of degradable pHEMA hydrogels containing graphene oxide. Acta Biomaterialia173:351-364, 2024. [Journal: Article] [IF: 9,7 (*)]
DOI: 10.1016/j.actbio.2023.11.012 SCOPUS: 85178625789

Moura D., Pereira A.T., Ferreira H.P., Barrias C.C., Magalhães F.D., Bergmeister H., Gonçalves I.C.,
Poly(2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contacting applications: From soft inert to strong degradable material. Acta Biomaterialia164:253-268, 2023. [Journal: Article] [CI: 4] [IF: 9,7 (*)]
DOI: 10.1016/j.actbio.2023.04.031 SCOPUS: 85158155551

Pereira A.T., Rodrigues C.R.S., Silva A.C., Vidal R., Ventura J.O., Gonçalves I.C., Pereira A.M.,
Tailoring the Electron Trapping Effect of a Biocompatible Triboelectric Hydrogel by Graphene Oxide Incorporation towards Self-Powered Medical Electronics. ACS Biomaterials Science and Engineering9(6):3712-3722, 2023. [Journal: Article] [CI: 1] [IF: 5,8 (*)]
DOI: 10.1021/acsbiomaterials.2c01513 SCOPUS: 85163251117

Moura D., Pereira R.F., Gonçalves I.C.,
Recent advances on bioprinting of hydrogels containing carbon materials. Materials Today Chemistry23:, 2022. [Journal: Review] [CI: 10] [IF: 7,3]
DOI: 10.1016/j.mtchem.2021.100617 SCOPUS: 85119916519

Gonçalves I.C., Henriques P.C.,
Graphene: an ally for antibacterial biomaterials. New Trends in Smart Nanostructured Biomaterials in Health Sciences:379-407, 2022. [Book: Book Chapter]
DOI: 10.1016/B978-0-323-85671-3.00004-X SCOPUS: 85158937556

Ferreira H.P., Moura D., Pereira A.T., Henriques P.C., Barrias C.C., Magalhães F.D., Gonçalves I.C.,
Using Graphene-Based Materials for Stiff and Strong Poly(ethylene glycol) Hydrogels. International Journal of Molecular Sciences23(4):, 2022. [Journal: Article] [CI: 6] [IF: 5,6]
DOI: 10.3390/ijms23042312 SCOPUS: 85125399528

Amaral S.I., Costa-Almeida R., Gonçalves I.C., Magalhães F.D., Pinto A.M.,
Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon190:194-244, 2022. [Journal: Review] [CI: 18] [IF: 10,9]
DOI: 10.1016/j.carbon.2021.12.084 SCOPUS: 85123031677

Pereira A.T., Schneider K.H., Henriques P.C., Grasl C., Melo S.F., Fernandes I.P., Kiss H., Martins M.C.L., Bergmeister H., Gonçalves I.C.,
Graphene Oxide Coating Improves the Mechanical and Biological Properties of Decellularized Umbilical Cord Arteries. ACS Applied Materials and Interfaces13(28):32662-32672, 2021. [Journal: Article] [CI: 9] [IF: 10,4]
DOI: 10.1021/acsami.1c04028 SCOPUS: 85111180304

Henriques P.C., Pereira A.T., Bogas D., Fernandes J.R., Pinto A.M., Magalhães F.D., Gonçalves I.C.,
Graphene films irradiated with safe low-power NIR-emitting diodes kill multidrug resistant bacteria. Carbon180:10-21, 2021. [Journal: Article] [CI: 8] [IF: 11,3]
DOI: 10.1016/j.carbon.2021.04.085 SCOPUS: 85105267175

Henriques P.C., Pereira A.T., Pires A.L., Pereira A.M., Magalhães F.D., Gonçalves I.C.,
Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness. ACS Applied Materials and Interfaces12(18):21020-21035, 2020. [Journal: Article] [CI: 33] [IF: 9,2]
DOI: 10.1021/acsami.9b21841 SCOPUS: 85084379485

Pereira A.T., Henriques P.C., Schneider K.H., Pires A.L., Pereira A.M., Martins M.C.L., Magalhaes F.D., Bergmeister H., Goncalves I.C.,
Graphene-based materials: The key for the successful application of pHEMA as a blood-contacting device. Biomaterials Science9(9):3362-3377, 2021. [Journal: Article] [CI: 13] [IF: 7,6]
DOI: 10.1039/d0bm01699c SCOPUS: 85105463372

Pinto A.M., Pereira A.T., Gonçalves I.C.,
Carbon Biomaterials. Biomaterials Science: An Introduction to Materials in Medicine:327-360, 2020. [Book: Book Chapter] [CI: 4]
DOI: 10.1016/B978-0-12-816137-1.00025-8 SCOPUS: 85125736312

Borges I., Henriques P.C., Gomes R.N., Pinto A.M., Pestana M., Magalhães F.D., Gonçalves I.C.,
Exposure of smaller and oxidized graphene on polyurethane surface improves its antimicrobial performance. Nanomaterials10(2):, 2020. [Journal: Article] [CI: 18] [IF: 5,1]
DOI: 10.3390/nano10020349 SCOPUS: 85079714581

Melo S.F., Neves S.C., Pereira A.T., Borges I., Granja P.L., Magalhães F.D., Gonçalves I.C.,
Incorporation of graphene oxide into poly(&ε;-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering C109:, 2020. [Journal: Article] [CI: 28] [IF: 7,3]
DOI: 10.1016/j.msec.2019.110537 SCOPUS: 85077755863

Pereira A.T., Henriques P.C., Costa P.C., Martins M.C.L., Magalhães F.D., Gonçalves I.C.,
Graphene oxide-reinforced poly(2-hydroxyethyl methacrylate) hydrogels with extreme stiffness and high-strength. Composites Science and Technology184:, 2019. [Journal: Article] [CI: 24] [IF: 7,1]
DOI: 10.1016/j.compscitech.2019.107819 SCOPUS: 85072771699

Henriques P.C., Borges I., Pinto A.M., Magalhães F.D., Gonçalves I.C.,
Fabrication and antimicrobial performance of surfaces integrating graphene-based materials. Carbon132:709-732, 2018. [Journal: Review] [CI: 71] [IF: 7,5]
DOI: 10.1016/j.carbon.2018.02.027 SCOPUS: 85043307316

Gomes R.N., Borges I., Pereira A.T., Maia A.F., Pestana M., Magalhães F.D., Pinto A.M., Gonçalves I.C.,
Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon139:635-647, 2018. [Journal: Article] [CI: 45] [IF: 7,5]
DOI: 10.1016/j.carbon.2018.06.044 SCOPUS: 85050155850

Sousa A., Neves S.C., Gonçalves I.C., Barrias C.C.,
In vitro interaction of polymeric biomaterials with cells. Characterization of Polymeric Biomaterials:285-315, 2017. [Book: Book Chapter] [CI: 5]
DOI: 10.1016/B978-0-08-100737-2.00012-1 SCOPUS: 85071391610

Pinto A.M., Goncalves C., Sousa D.M., Ferreira A.R., Moreira J.A., Goncalves I.C., Magalhães F.D.,
Smaller particle size and higher oxidation improves biocompatibility of graphene-based materials. Carbon99:318-329, 2016. [Journal: Article] [CI: 62] [IF: 6,3]
DOI: 10.1016/j.carbon.2015.11.076 SCOPUS: 84959449298

Ongoing Projects

Light-activated cap for catheters sterilization
Reference: Innovator Award Ref. UNS127922
Proponent: Instituto de Investigação e Inovação em Saúde - Universidade do Porto
Sponsor: Wellcome Trust
From 01-FEB-22 to 31-JAN-25
Exploring blood to generate energy for cardiac electronic devices
Reference: 2022.05030.PTDC
Proponent: Instituto de Investigação e Inovação em Saúde - Universidade do Porto
Sponsor: FCT - Fundação para a Ciência e a Tecnologia
From 01-FEB-23 to 31-JAN-26
Blood as energy source to power smart cardiac devices
Reference: HORIZON-EIC-2022-PATHFINDERCHAL-01-04-GA 101115525
Proponent: Instituto de Investigação e Inovação em Saúde - Universidade do Porto
Sponsor: CE - Comissão Europeia
From 01-OCT-23 to 30-SEP-26
Smart cap for catheters sterilization
Reference: Caixa Research Validate Ref. CI21-00256
Proponent: INEB
Sponsor: La Caixa Foundation
From 01-JUL-22 to 31-JUL-24
GO-Graft – Synthetic anti-adhesive small diameter vascular graft for coronary artery bypass surgery
Reference: Caixa Research Validate Ref. CI22-00285
Proponent: INEB
Sponsor: La Caixa Foundation
From 01-JUN-22 to 31-JUL-24