Where Ideas grow

Bioengineering & Synthetic Microbiology

ABOUT

MicroBioSyn is a multidisciplinary group focused on basic and applied aspects of bacterial physiology and metabolism. The main lines of research are: the development of bacterial chassis for the production of biomolecules and biopolymers, explore possible biotechnological/biomedical applications of these compounds, and study the molecular mechanisms regulating the production and secretion of target molecules.

 

RESEARCH

MicroBioSyn members are contributing to generate robust bacterial chassis and to (re)design pathways for the optimized production of given compounds (w/ several European academic and industrial partners). In this context, we identified and validated neutral sites in the chromosome of Synechocystis foreseeing its use of as a photoautotrophic chassis (8; EPR#16175360.3). The assembly, export and characterization of cyanobacterial extracellular polymeric substances (EPS) and their potential application in bioremediation and biomedicine are being investigated (Univ. Florence, INEB & FEUP). A phylum-wide analysis of EPS-related genes/proteins was performed and a model for the assembly/export of the polymers was proposed. The potential of these polymers to be used as biosorbents for heavy metals and controlled delivery of functional proteins was demonstrated (1,3,7). The propensity of peptides for self-assembly in drug delivery and in aberrant aggregation in neurodegenerative disorders is also being studied. The adsorption of guest compounds by these peptide-based materials was found to be size-dependent allowing an extremely efficient separation of small compounds (10). The cyanobacterial biodiversity of the Portuguese coast and their potential to produce bioactive compounds was evaluated (CIIMAR, Scripps & Institut Pasteur) (6). In addition, the biosynthetic pathways for the production of secondary metabolites are being studied in cyanobacteria and Streptomyces, and already led to the identification of polyene biosynthetic precursor units and of novel regulatory proteins (Univ. Léon) (9). Recently, the group has been focusing on bacterial secretion mechanisms, not only identifying key players, but also contributing to better understand how secretion may be operated via non-classical pathways, namely via membrane vesicles (2).

This is a confocal micrograph of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 grown under nitrogen-fixing conditions. Cyanobacterial autofluorescence is presented in red, while GFP fluorescence is shown in green. In such strain, GFP expression is under the control of a he